
Puzzle Reassembly using Model Based Reinforcement Learning
(It is advisable that you use the more up-to-date web-version: https://johan-gras.github.io/projects/puzzlereassembly/)

Johan Gras
University of Cergy-Pontoise

johan.gras@outlook.com

Supervised by David Picard
and Marie-Morgane Paumard

david.picard@ensea.fr

marie-morgane.paumard@ensea.fr

Abstract

In this paper, we are interested in solving visual jigsaw
puzzles in a context where we cannot rely on boundary in-
formation. Thus, we train a deep reinforcement learning
model that iteratively select a new piece from the set of
unused pieces and place it on the current resolution. The
pieces selection and placement is based on deep visual fea-
tures that are trained end-to-end. Our contributions are
twofold: First, we show that combining a Monte Carlo Tree
Search with the reinforcement learning allows the system
to converge more easily in the case of supervised learning.
Second, we tackle the case where we want to reassemble
puzzles without having a groundtruth to perform supervised
training. In that case, we propose an adversarial training of
the value estimator and we show it can obtain results com-
parable to supervised training.

1. Introduction
In this paper, we focus on jigsaw puzzle reassembly. Our

puzzles are made from 2D images and divided in 9 same-
sized squared fragments, while also considering an erosion
between each fragment. The problem consists in finding
the optimal absolute position of each fragment on the re-
assembly, as show in Figure x. Moreover, we want to find
this set of optimal positions using, on the one hand, an itera-
tive process, and one the other hand, a content-based pattern
matching method.

During the last decade, deep convolutional architectures
as become the norm in most pattern matching tasks involv-
ing 2D images. Therefore, we choose to use such methods
in order to extract semantic information from fragments and
the reassembly. We build on the method proposed by Pau-
mard et al. [11] that proposes to predict the relative posi-
tion of a fragment with respect to another one, using a deep
learning extractor and a bilinear feature aggregator.

In order to solve this problem, we construct this one as
a Markov Decision Process, while solving the latter with

Figure 1. Pathological case puzzle reassembly on MNIST
SVHN.Top row: reconstruction; bottom row: perfect image.

a reinforcement learning (RL) algorithm. We build on the
ExIt framework proposed by Anthony et al. [3] and the
AlphaZero algorithm [12], that proposes to use model based
RL in conjunction with deep learning to guide the model
exploration.

However, such methods enforce the presence of the
ground truth to learn the semantic of our problem. Alter-
natively, we replace the state value approximator trained on
the ground truth, by an adversarial discriminator trying to
predict the realness of one puzzle reassembly. We show that
using the discriminator’s method not only provided similar
accuracy compared to our value-based method, but also al-
low for faster convergence.

Our contributions are the following. First, a model based
RL technique using a Monte Carlos Tree Search to compute
simulations and two Neural Networks guiding the search
and evaluating each final search’s trajectory. Second, a dis-
criminator based method using deep learning to predict each
fragment’s position probability. Third, the merging of the
two methods, using the discriminator network instead of the
initial state value approximator.

This paper is organized as follows: in section 2, we
present related work on puzzle solving and fragment re-

1

https://johan-gras.github.io/projects/puzzlereassembly/

assembly as well as relevant literature on iterative problem
solving methods. Next, we detail the core of our value-
based method : the optimization problem, the path simu-
lation and the architecture of our neural networks. In sec-
tion 4, we introduce the discriminator base method and we
explain the merging of our methods. Then, we present our
experimental setups and analyze the results obtained for dif-
ferent methods and datasets.

2. Literature review
Our project was inspired by several research articles

which aim at solving this very problem using such tech-
niques as deep learning. Other articles were unrelated to
our purpose, but we adapted techniques described in there
for our project purpose (such as Alpha Zero).

2.1. Review of puzzle solving methods

Most publications of this field [4, 1] rely on the border
irregularities and aim for precise alignment. These methods
perform well on a small dataset with only one source of
fragments. However, they are fragile towards erosion and
fragment loss.

Without being interested in jigsaw puzzle solving, Do-
ersch et al. proposed a deep neural network to predict the
relative position of two adjacent fragments in [6]. The au-
thors show their proposed task outperforms all other unsu-
pervised pretraining methods. Based on [6], Noroozi and
Favaro [9] introduce a network that compares all the nine
tiles at the same time. Those papers do not focus on solving
a jigsaw puzzle but, on understanding the spatial structure
of images by building generic images features.

However, Paumard et al. in [11] and [10] directly attempt
to solve those kind of problems with the use of deep learn-
ing and based on the method proposed in [6]. Moreover,
they bring two significant innovations with their method.
First, they consider the correlations between localized parts
of the fragments using the Kronecker Product of the feature
vectors. Thus, directly using the spacial correlation allow
for faster convergence than the concatenation of the feature
vectors used in [6]. Additionally, they look for a complete
fragment reassembly which they performed using the neu-
ral network predictions to build a shortest path graph prob-
lem. Therefore, achieving a significant accuracy increase
over a pure greedy policy. Taken together, they obtained re-
sults that outperformed the previous state of the art in jigsaw
puzzle solving.

Their method works in the following way (see 2) :

• First, they use deep learning in order to extract impor-
tant features of each image fragments.

• Then, they compare each couple of fragments features
to predict the relative position of the two tiles, through
a classifier.

Figure 2. Overview of the method. Knowing a central fragment,
we are looking for the correct arrangement to reassemble the im-
age.

• Finally, they solve the best reassembly by computing
the shortest path problem given the relative positions
of each couples provided.

More specifically, the model perform quite well when we
give it only the 9 accurate fragments. However, if we try to
delete or to add outsider fragments to the puzzle, the accu-
racy decrease strongly. Furthermore, the increase of compu-
tation time is reasonable as long as the puzzle still contains
9 pieces, but any increment of the number of pieces leads
to an factorial increase of the number of solution. Thus, the
reassembly problem is NP-hard and the problem become
quickly intractable.

2.2. MCTS based methods

As we seen, STOA methods like [10] suffer indeed from
serious scaling issues. In this research project, we are look-
ing to solve the scaling problem of the jigsaw puzzle re-
assembly. In particular, we are looking to scale both in
terms of the size of the puzzle and the size of the fragments
ensemble.

More specifically, we are looking to use a similar ap-
proch as [6] and [11] in order to extract vector features
from our images and then to compute the position likelihood
of each fragments. On the other hand, instead of solving
the shortest path problem using an expensive optimal algo-
rithm like Disjtra in [10], we want to tackle this by using an
heuristic search based algorithm, thus speeding up the pro-
cess of evaluating the shortest path in our graph. Thus, we
will be able to compute larger graphs in a reasonable time
frame.

Here we propose to used a deep reinforcement learn-
ing algorithm such as Alpha Zero [12] in order to learn the
heuristic function only from self-play. AlphaZero is a more
generalized variant of the AlphaGo Zero [2] algorithm, that
accommodates, without special casing, a broader class of
game rules (chess and shogi, as well as Go). Their results
demonstrate that a general-purpose reinforcement learning
algorithm can learn, tabula rasa (without domain-specific
human knowledge or data) superhuman performance across
multiple challenging games.

Instead of a handcrafted evaluation function and move-

ordering heuristics, AlphaZero uses a deep neural network.
This neural network takes the board position as an input and
outputs a vector of move probabilities and a scalar value es-
timating the expected outcome of the game from position.
AlphaZero learns these move probabilities and value esti-
mates entirely from self-play; these are then used to guide
its search in future games. Additionally, AlphaZero uses a
general purpose Monte Carlo tree search (MCTS) algorithm
[5]. Each search consists of a series of simulated games of
self-play that traverse a tree from root state until a leaf state
is reached.

3. Puzzle reassembly using model based RL

In this section, we detailed our first proposed method.
This is a model based reinforcement learning technique,
which uses a Monte Carlos Tree Search to compute sim-
ulations and two Deep Neural Networks that work as Value
Function and Advantage Function approximators.

3.1. Problem formulation and formalism

From a set of fragments coming from the same image,
we want to solve their best reassembly by assigning each
fragment to its optimal position.

3.1.1 Data representation

We want to introduce the notation of our data. n is the num-
ber of fragments of a puzzle. fi is a flatten representation of
the ith fragment given. fempty is a special fragment filled
with zeros. F is a puzzle reassembly (a n-sized vector of
fragments). F ∗ is the optimal puzzle reassembly.

3.1.2 Goal, MDP and objective maximisation

Our goal being to find the optimal puzzle reassembly F ∗.
We want to consider this problem as a Markov Decision
Process (MDP) in order to solve it with a reinforcement
learning algorithm.

Starting from an initial state s0, we want to assign each
fragment fi to its optimal position p by taking the n optimal
actions a∗i . More specifically, we want to find one optimal
policy π∗ (7) in order to find those optimal actions.

We define the notation part of the MDP formalism.
st is the state at step t defined by the tuple (Ft, Rt). With

Ft the puzzle reassembly at step t. Rt an n-sized vector,
fempty padded, of every fragment not used in Ft.

The initial state s0 from the start-state distribution (1)
is composed of F0 an empty puzzle reassembly and R0 n-
sized vector of fragments fi. In fact, this start-state distri-
bution is due to the uniform sample of a puzzle from the
dataset.

s0 ∼ ρ0(.) (1)

An action is characterized by a fragment-position pair
at = (fi, p). With fi a fragment from Rt and p a unas-
signed position of the reassembly Ft.

An action at may be applied to a state st using a deter-
ministic transition function (2), creating the new state st+1.
Thus, this transition function f dictate the law of our syn-
thetic environment.

st+1 = f(st, at) (2)

{a∗i } is the set of the n optimal actions to take in order
to solve the puzzle. In fact, this is due to the particularity
of of our problem. No matter in what order the actions are
applied the final reassembly Fn will be identical.

A trajectory τ , is a sequence of states and actions
(s0, a0, s1, a1, ..., an−1, sn).
rt (3), the reward for taking the action at at state st.

rt = R(st, at) (3)

rt =

{
1
n if at ∈ {a∗i }
0 if at /∈ {a∗i }

(4)

R(τ) (5), the finite-horizon undiscounted return of a tra-
jectory τ .

R(τ) =

n∑
t=0

rt (5)

π(st) (6) is a policy that dictate witch action an agent
should take in a given state.

at = π(st) (6)

Our central optimization problem (7) is to optimize the
expected return of our policy π (8). With π∗ being the opti-
mal policy.

π∗ = argmax
π

J(π) (7)

J(π) =
∑
τ

P (τ |π)R(τ) = E
τ∼π

[R(τ)] (8)

3.2. The ExIt framework

Human reasoning consists of two different kinds of
thinking. When learning to complete a challenging plan-
ning task, such as solving a puzzle, humans exploit both
processes: strong intuitions allow for more effective ana-
lytic reasoning by rapidly testing promising actions. Re-
peated deep study gradually improves intuitions. Stronger
intuitions feedback to stronger analysis, creating a closed

Figure 3. Expert Iteration framework.

learning loop. In other words, humans learn by thinking
fast and slow.

Expert Iteration (ExIt) 3 is a general framework for
learning that can result in powerful AI machines, without
needing to mimic human strategies. ExIt can be viewed
as an extension of Imitation Learning methods to domains
where the best known experts are unable to achieve satisfac-
tory performance. In standard IL an apprentice is trained to
imitate the behaviour of an expert. In ExIt, between each it-
eration, an Expert Improvement step is perform, where the
apprentice policy is bootstrap to increase the performance
of the expert.

3.3. Overview

The goal of this method is to find the optimal policy (7)
able to solve any puzzles 4 from a specific dataset. In or-
der, to achieve this goal we need to train a Reinforcement
Learning (RL) algorithm able to find such policy.

We use a model based RL algorithm instead of less sam-
ple efficient algorithm such as Policy Gradients or DQN.
In particular, we use a Monte Carlos Tree Search to com-
pute simulation in our synthetic environment and those sim-
ulations allow our algorithm for a slow-thinking phase in-
stead of pure intuition. The MCTS is a strong playing strat-
egy and is acting as the expert in the ExIt framework, with
πMCTS its policy.

A first neural network, the Policy Network (PN), act as
the apprentice and try to mimic the expert policy πMCTS .
In other words, we can consider that this PN is acting as an
Advantage Function (9) approximator, with πPN being the
apprentice policy.

Aπ(s, a) = Qπ(s, a)− V π(s) (9)

A second neural network, the Value Network (VN), act
as a Final Value Function (10) approximator. This VN ap-
proximate the finite-horizon return of the trajectory τ used
to be in the final state sf . Therefore, it evaluates the quality
of a complete reassembly.

Figure 4. Workflow of a puzzle solving. Knowing all the frag-
ments of a puzzle, we are looking for the optimal assignment of
each fragment. First, those fragments constitute the initial state.
Second, a ”dreaming phase” occurs with the MCTS simulating
multiple trajectories (of paths) and the networks estimating their
action-state values. After its dream, the MCTS should give us a
strong estimated of the optimal action. Third, the transition func-
tion apply the optimal action on the actual state, giving us a new
state. Again, this process is repeated until all fragments are as-
signed.

Vf (sf) = R(τ) (10)

During the Expert Improvement phase 3 we use the PN
to direct the MCTS toward promising moves, while effec-
tively reducing the branching factor. In this way, we boot-
strap the knowledge acquired by Imitation Learning back
into the planning algorithm. In addition, after each simu-
lation we backpropagate finals state value estimated by the
VN. Indeed, this let our algorithm solve puzzles without
having access to the ground truth after training.

3.4. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an any-time best-
first tree-search algorithm. It uses repeated game simula-
tions to estimate the value of states, and expands the tree
further in more promising lines. When all simulations are
complete, the most explored move is taken.

Figure 5. Monte Carlo Tree Search structure. The simulation start
in the current game state, then select the action maximising Q+U
until a leaf node is reach, to finally expand the leaf node.

3.4.1 The search

Each search, consist of a series of simulated games by the
MCTS that traverse a tree from root state until a final state
is reached. Each simulation proceeds in four parts.

First, a tree phase where the tree is traversed by taking
actions according to a tree policy 5. Second, an expansion
phase where child nodes are created from legal moves.
Third, a rollout phase, where some default policy is fol-
lowed until the simulation reaches a final state. Finally, the
backpropagation of the final state value on its final parents
nodes. We describe here the MCTS algorithm used in our
method; further details can be found in the pseudocode 1.

The MCTS is a tree search where each node corresponds
to a state-action pair (s, a) composed of a set of statis-
tics, {N(s, a),W (s, a), Q(s, a), P (s, a)}, with N(s, a) the
visit count,W (s, a) the total action-value,Q(s, a) the mean
action-value, and P (s, a) the prior probability of selecting
a in s.

During the tree phase, actions are selected by choosing in
in each state s the action a that maximise the UCB formula
(11). Q(s, a) is the mean value of the next state and U(s, a)
(12) a function that increases if an action hasn’t been ex-
plored much or if the prior probability of the action is high.

UCB(s, a) = Q(s, a) + U(s, a) (11)

U(s, a) = CPUCTP (s, a)

√
N(s)

1 +N(s, a)
(12)

Once a leaf node sL is reach we enter in the expansion
phase. We use the PN (13) to obtain a prior prediction P
over the action space by evaluating the leaf node. Then, we
expand the tree by initialising each legal child node with

a softmax normalisation (14), such that a and i are legals
actions. After, we choose once again the action maximising
the UCB formula (11).

P = PN θ(sL) (13)

p(sL, a) =
exp(Pa)∑
i exp(Pi)

(14)

Then, the rollout phase begin, where the default policy
used is simply to choose actions uniformly from the legal
ones. This random policy is followed until we reach a ter-
minal state.

Finally, when the rollout is complete, we compute v̂ an
approximation of the Final Value Function (10) with the VN
(15). This estimated reward signal is propagated through
the tree. Thus, all the parents visits counts and total action-
value are updated in a backward pass.

v̂ = VN θ(Ff) (15)

At the end of the search, the action is return in function
of its exploration during the search N . Two policies are
used by the MCTS, one for competitive play and one for
exploratory play.

3.4.2 Exploration versus exploitation trade-off

On-line decision making involves a fundamental choice; ex-
ploration, where we gather more information that might
lead us to better decisions in the future or exploitation,
where we make the best decision given current information
in order to optimize our present reward. This exploration-
exploitation trade-off comes up because we’re learning on-
line. We’re gathering data as we go, and the actions that
we take affects the data that we see, and so sometimes it’s
worth to take different actions to get new data.

In order to explore our synthetic environment and not
only acting greedily, we use three kinds of exploration
processes : an Upper Confident Bound (UCB), a Dirichlet
noise onto the root’s prior and a softmax sample over the
action’s visit count to select a final action. The first one is
applied both during the training and the evaluation phase,
while the other two, are only applied during the exploratory
phase.

To select a move during the simulation phase, we use the
UCB score (11). Thus, we do not only act greedily over the
mean estimation of an actionQ, but we also estimate an up-
per confidence U , of what we think the mean could be. The
UCB allow to select among the non-greedy actions accord-
ing to their potential for actually being optimal, taking into
account both how their estimates are to being maximal and
the uncertainties in those estimates.

At the start of each search, we add a Dirichlet noise (16)
onto the root’s prior (17), to encourage the search to explore
new actions. α is the parameter of the symmetric Dirichlet
distribution and β the parameter of the linear interpolation
between the original prior value and a sample of the distri-
bution.

X ∼ Dir(α) (16)

p(sroot, a) = p(sroot, a)(1− β) + βX (17)

The search return the visit-count vector of the root’s
moves, Na = N(sroot, a). The move to play is either select
stochastically (19), for exploration or deterministically (20),
for competitive play. During training, the move is sample
from the probability distribution over moves (18) and in ex-
ploitation, greedily in respect to the visit counts.

πa = Pr(a) =
exp(Na)∑
i exp(Ni)

(18)

a ∼ π (19)

a = argmax
a

Na (20)

3.4.3 The MCTS pseudocode

Listing 1. Modified MCTS algorithm.
def mcts (game , p o l i c y n e t , v a l u e n e t) :

I n i t i a l i z e r o o t node
r o o t = Node ()
p o l i c y n e t . expand (r o o t , game)
a d d e x p l o r a t i o n n o i s e (r o o t)

f o r s in range (n u m s i m u l a t i o n s) :
S t a r t a new s i m u l a t i o n
simu game = game . c l o n e ()
s e a r c h p a t h = [r o o t]
a c t i o n , node = s e l e c t c h i l d (r o o t)
simu game . apply (a c t i o n)
s e a r c h p a t h . append (node)

Tree p o l i c y
whi le not simu game . f i n i s h e d ()

and node . expanded () :
a c t i o n , node = s e l e c t c h i l d (node)
simu game . apply (a c t i o n)
s e a r c h p a t h . append (node)

Expans ion
i f not simu game . f i n i s h e d () :

p o l i c y n e t . expand (node , simu game)
a c t i o n , node = s e l e c t c h i l d (node)

simu game . apply (a c t i o n)
s e a r c h p a t h . append (node)

R o l l o u t phase
whi le not simu game . f i n i s h e d () :

a c t i o n = r a n d o m a c t i o n (simu game)
simu game . apply (a c t i o n)

Backpropaga te t h e t e r m i n a l v a l u e
v a l u e = v a l u e n e t . e v a l (simu game)
b a c k p r o p a g a t e (s e a r c h p a t h , v a l u e)

R e t ur n t h e MCTS p o l i c y ’ s a c t i o n
a c t i o n = p o l i c y m c t s (game , r o o t)
re turn a c t i o n

3.5. Functions approximators

In this method we use two Neural Networks working as
functions approximators, the Policy Network (PN) and the
Value Network (VN). In particular, the PN compute an es-
timation of the Advantage Function (9), learning the expert
policy πMCTS . Whereas, the VN estimate the Final Value
Function (10), learning from the ground truth.

Value Network architecture The non-domain specific
architecture of the VN is described in Figure 6. We use
a problem dependent neural network architecture v̂ =
VN θ(Ff) with parameters θ. This neural network takes the
final reassembly Ff as input and output a scalar value v̂ es-
timating the finite-horizon return of the state’s trajectory.

Policy Network architecture The global PN architecture
is described in Figure 7. The neural network P = PN θ(sL)
takes a state s as input and outputs a move probability P
with components Pa = Pr(a|s) for each action a.

More specifically, the PN takes F andR the couple com-
posing the state s as separated inputs. On the one hand,
the reassembly representation is extracted using a first Fea-
ture Extraction Network (FEN1). On the other hand, each
individual fragment representation of R is extracted using
a second Feature Extraction Network (FEN2), with shared
weights. Both FEN architecture is either, depending on the

Figure 6. Value network architecture.

Figure 7. Policy network architecture.

image complexity: a fully connected network or a deep con-
volutional architecture followed by a fully connected clas-
sifier.

The features of each FEN are then combined through
a Combination Layer (CL). We use a bilinear product in
order to optimally capture the spacial covariances among
the features. In particular, we use this bilinear layer
(21), with ∅FEN1 (fi) and ∅FEN2 (F) the output of
the first and second FEN, respectively inside the ensem-
ble RD and RD′

. W is a learnable tensor, such that
W = (wp,d,d′)p∈P,d∈D,d′∈D′ , with P the number of po-
sitions in the puzzle. Y is the output of the CL, such that
Y = (yi,p)i∈N,p∈P .

Yi,p = ∅FEN2 (fi)
TWp∅FEN1 (F) (21)

Finally, we flatten the output Y of the CL such as Y ′a =
Yi,p, with a = (i, p) an action and we apply a softmax nor-
malization (22) to get the move probabilities P .

Pa = Pr(a) =
exp(Y ′a)∑
i exp(Y

′
i)

(22)

Training Our algorithm learns these move probabilities
and value estimates entirely from self-play; these are then
used to guide its search for future reassembly.

At the end of each reassembly, the final reassembly is
scored according to the cumulative reward of the environ-
mentR(τ). The VN parameters are updated to minimize the
error between the predicted outcome VN θ(Ff) and the en-
vironment outcome. While the PN parameters are updated
to maximize the similarity of the move probabilities vectors
P to the search probabilities π (18). Specifically, the param-
eters are adjusted by gradient descent with a mean-squared
error for the VN loss and a cross-entropy for the PN loss.

4. Puzzle reassembly using RL with discrimi-
native value estimation

In this section, we introduce briefly the discriminator
based method, before focusing on our merged method, com-
bining this last method and the RL’s describes in section 3.

4.1. Discriminative value estimation

This method can be seen as a mixture between an Actor-
Critic [8] and a Generative Adversarial Network [7] meth-
ods. The actor is also a generator and try to reassemble the
puzzle. The critic is also a discriminator and try to predict
the reassembly realness.

The discriminator is trying to make the difference be-
tween real images and reassembly images coming from the
generator. Then, the prediction of the discriminator is used
to train the generator. If the discriminator’s prediction is
good, actions chosen by the generator are reinforced. Oth-
erwise, if the prediction is low actions chosen are negated.

This discriminative-based technique is very efficient be-
cause it can be trained without having access to the ground
truth. For more details on this method, refer to Loı̈c’s paper:
Puzzle reassembly using deep reinforcement learning with
an adversarial model.

4.2. Merged method

We merged our two iterative puzzle reassembly methods
into one. We still use the model base RL algorithm, but
instead of using the original Value Network (15) from the
first method, we use the discriminator from the last subsec-
tion. Therefore, instead of estimating the cumulative reward
of the trajectory, we try to estimate the realness of the re-
assembly. The network architecture of the discriminator is
the same as the VN architecture.

The goal of this merged version is to keep the best of
both worlds. On the one hand, the reassembly look-ahead
of the Monte Carlo Tree Search, on the other hand, the ”un-
supervised” setup of the discriminator value.

5. Experiments
We test our methods for different kinds of datasets with

different setup. First, we present the results of the MNIST
dataset, second we consider an erosion of the MNIST im-
ages and finally on the MNIST SVHN dataset.

Two metrics are used in order to evaluate our methods.
On the one hand, the fragments accuracy is the percentage
of perfectly position fragments, on the other hand, the per-
fect reconstruction is a pixel-wise difference with the origi-
nal image with a 10-pixel threshold.

5.1. MNIST

We tested on the MNIST dataset 8 because the images
are small enough for us to train the complete network and
search for the best hyper-parameters.

In figure 9 we can see that the increase in the number
of simulation increase logarithmically the accuracy. Also,
both the classic method and the merged method give similar
results, however, if the number of simulations is too low
the merged method’s accuracy is dropping. It may seem

Figure 8. Mnist Puzzles examples. Our puzzles are made from 2D
images and divided in 9 same-sized squared fragments.

Figure 9. Accuracy of the two methods in test-time, with different
numbers of simulations in the MCTS.

surprising that the merged method works so well without
having access to the ground truth during the training phase.

In figure 10 and 11, we can observe the evolution of ac-
curacy thought the training of both methods. The training
time of the merged method is 5 times smaller than the clas-
sic method. However, the correlation of the Value Network
to the fragments accuracy is a lot stronger than the Discrim-
inator Network. We train the VN to directly estimate this
value so this not a surprise.

With eroded fragments Test of the merged method on
the MNIST dataset with erosion between the fragments 13.
The test time result is really good 14, especially on the per-
fect reassembly metrics. During the training 15 we observe
both accuracy being more or less equal, the correlation co-
efficient is not in the best shape ever.

5.2. MNIST SVHN

After playing with MNIST, we wanted to go further on
the image complexity. Therefore we try our methods on
MNIST SVHN , we show in 16 some promising reconstruc-
tion. On this dataset, with a really short training time 18, we
achieve high fragments accuracy 17.

Figure 10. Evolution of puzzle reconstruction accuracy through
training for the classic method. The coefficient correlation is cal-
culated on the last 100 values, then a MA10 is used to smooth the
curve. MA10 : Moving Average on 10 steps.

Figure 11. Evolution of puzzle reconstruction accuracy through
training for the merged method.

Figure 12. Pathological case puzzle reassembly on MNIST. Top
row: reconstruction; bottom row: perfect image.

References
[1] 3D puzzle reconstruction for archeological fragments, vol-

Figure 13. Pathological case puzzle reassembly on MNIST with
erosion. Top row: reconstruction; bottom row: perfect image.

Figure 14. Accuracy of the merged method in test-time.

Figure 15. Evolution of puzzle reconstruction accuracy through
training for the merged method on MNIST with erosion.

ume 9393, 2015. 2
[2] Mastering the game of Go with deep neural networks and

tree search. Nature, 529(7587):484–489, jan 2016. 2
[3] T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow

with deep learning and tree search. CoRR, abs/1705.08439,
2017. 1

Figure 16. Pathological case puzzle reassembly on MNIST SVHN.
Top row: reconstruction; bottom row: perfect image.

Figure 17. Accuracy of the classic method in test-time.

Figure 18. Evolution of puzzle reconstruction accuracy through
training for the classic method on MNIST SVHN.

[4] J. C. McBride and B. B. Kimia. Archaeological fragment
reconstruction using curve-matching. volume 1, pages 3 – 3,
07 2003. 2

[5] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo
tree search: A new framework for game ai. In AIIDE, 2008.
3

[6] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. In Inter-
national Conference on Computer Vision (ICCV), 2015. 2

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014. 7

[8] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In
Advances in neural information processing systems, pages
1008–1014, 2000. 7

[9] M. Noroozi and P. Favaro. Unsupervised learning of vi-
sual representations by solving jigsaw puzzles. CoRR,
abs/1603.09246, 2016. 2

[10] M. Paumard, D. Picard, and H. Tabia. Image reassem-
bly combining deep learning and shortest path problem. In
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, edi-
tors, Computer Vision - ECCV 2018 - 15th European Con-
ference, Munich, Germany, September 8-14, 2018, Proceed-
ings, Part VI, volume 11210 of Lecture Notes in Computer
Science, pages 155–169. Springer, 2018. 2

[11] M.-M. Paumard, D. Picard, and H. Tabia. Jigsaw Puzzle
Solving Using Local Feature Co-occurrences In Deep Neural
Networks. In International Conference on Image Processing,
Athens, Greece, Oct. 2018. 1, 2

[12] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
T. Lillicrap, K. Simonyan, and D. Hassabis. A general rein-
forcement learning algorithm that masters chess, shogi, and
go through self-play. Science, 362(6419):1140–1144, 2018.
1, 2

